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MATHEMATICAL MODELING OF THE AERODYNAMIC CHARACTERISTICS
IN FLIGHT DYNAMICS

Murray Tobak, Gary T. Chapman, and Lewis B. Schiff

NASA Ames Research Center, Moffett Field, CA 94035

1. INTRODUCTION. Mathematical studies of the dynamic stability of

aircraft began essentially with Bryan's "Stability in Aviation" pub-

lished in 1911 [1]. This analysis appeared at the very beginning of

heavier-than-air flight itself, and has remained the foundation for
practically all subsequent studies of the subject. B. Melville Jones
[2]) reported on progress 25 years later and succinctly stated the sub-
ject's principal task:
"Given the shape of the aeroplane and the properties of the
air through which it moves, the air reactions X, Y, 2, L,
M, N depend on the motion of the aeroplane relative to the
air; that is to say upon the six variables U, V, W, P, Q, R
and their rates of change with respect to time. In prac-
tice, the principal difficulty lies in determining the
relationships between X, ¥, . . . and U, V, . . ."
The establishment of these relationships with sufficient realism is
what we now recognize as the province of mathematical modeling.
Bryan's formulation, which originated the subject, has at its core
the assumption that the aerodynamic forces and moments developed at a
given instant are functions only of the instantaneous values of the
variables that determine forces and moments in a steady flow.

When in

addition a linear dependence of the forces and moments on these
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variables is assumed, the equations governing the motions of aircraft
reduce to a set of ordinary differential equations having constant
coefficlents. With the form of the equations thus established, the
mathematical modeling problem is completed, and the study of stability
becomes synonymous with the study of the coefficients. The nature and
the determination of these coefficients, the "stability derivatives,"
have been the central concerns of experimenters and analysts alike
through the ensuing years.

Later investigations into the transient behavior of the forces ard
moments in response to sudden changes in the flow around the aircraft
led researchers to recognize that the forces and moments at an instant
were dependent not only on the instantaneous values of the flow varia-
bles but also on their past values (cf. [3] for a comprehensive summary
and bibliography). The concept of transient aerodynamic force and
moment responses to step changes in the flow variables, i.e., of
"indicial functions," coupled with the notion of superposition, led to
a new formulation of the equations of motion [4]. This formulation is
exact in principle within the assumption of linearity and the equations
of motion take the form of integro-differential equations. However,
reduction of the equations to equations correct to within a first-order
dependence on time-rates-of-change of the variables restores the form
of the original ordinary differential equations, which now include terms
that account for the past within the order of the approximation [5].

From the standpoint of mathematical modeling, exploiting the concept
of a linear indicial response was an important step, since it described

the process of generating an aerodynamic response to an arbitrary
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motion from a few aerodynamic indicial responses by using superposition
integrals. It is from this idea that the wodeling approach derives its
economy in the treatment of time~history effects. Further, use of the
superposition integral overcame in a concise way the first and most
objectionable assumption of Bryan's formulation: the aerodynamic forces
and moments could now depend on the history of the motion. Mathemati-
cally speaking, expressing the aerodynamic forces and moments in the
form of linear superposition integrals replaced Bryan's functions by
linear functionals.

As time passed, the continual expansion of the aircraft performance
envelope brought new aerodynami~ phenomena, such as shock waves and
concentrated vortex flows, into play. It became apparent that the ways
in which these phenomena influenced aircraft motion could not all be
encompassed by even the exact linear formulation of the aerodynamic
forces and moments. A reformulation of the aerodynamic system that was
free of the remaining assumption basic to the original formulation was
now in order. It could be anticipated that the reformulation would
result in the replacement of the superposition integrals, which were
linear functionals, by suitable nonlinear functionals. As it turned
out, this task could be accomplished easily by the adoption of Volterra's
original conception of a functional [6]. Functional analysis was used
to construct a framework within which the indicial function could be
reformulated as a nonlinear functional [7]); the result was a new defini-
tion for the indicial function that did not depend on a linearity
assumption. This definition led naturally to the derivation of integral

forms for the aerodynamic forces and moments which were the anticip ted
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generalizations of the superposition integrals. As in the case for the
exact linear formulation, it was found possible to reduce the results

to simpler, more practicable forms by virtue of the low angular rates-
of-change characteristic of aircraft motions. Subsequent papers [8-16]
revealed the implications of these results in regard to general motions,
experiments, and a variety of modeling questions. A comprehensive
summary of the work to date is avallable [17].

In recent years, we have become increasingly aware that vur extensive
use of concepts from fuuctional analysis in the modeling of systems
governing the dynamical motions of aircraft has been matched or sur-
passed by workers in a wide variety of fields. Noteworthy in this par-
ticular setting has been the body of work which has developed in several
branches of electrical engineering (for a comprehensive survey, see the
entire contents of [18,19]). We consider it important that the common
features of the efforts in these various fields be brought to the fore
for everyone's benefit. To that end, we shall take this opportunity to
recast the basic ideas of the approach we have taken in the modeling of
nonlinear aerodynamic responses in a way that we hope will be compatible
with some of the approaches taken in electrical engineering. We shall
emphasize the physical aspects of our approach to clarify its relation,
in particular, to the body of ideas underlying the use of nonlinear
functional expansions (cf. 120] for an excellent exposition of the latter
work). Finally, we shall try to show how our analysis can be extended

through its natural counectjon with ideas from bifurcation theory.
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2. MODELING INFLUENCE OF PAST MOTION BY PULSES. For clarity of
exposition, it 1s convenient to adopt the two-dimensional wing as illus-
tration. Results will have more general bearing, however.

Let the wing move away from a coordinate system whose origin is fixed
in space at the center of gravity at a time £ = 0. The distance
traveled by the center of gravity along the flightpath is measured by a
coordinate s. Let the center of gravity move at constant velocity V,,
so that the trace of its path, plotted against time £, is a straight
line. This is shown on Fig. 1. The wing is allowed to undergo changes
only in the angle of attack o, where o 1is the angle between the
velocity vector and the wing chord line. Projections of the leading
and trailing edges of the wing onto the plane containing the velocity
vector are maximum when « = 0. These maximum projections also trace
out straight lines on Fig. 1, parallel to the trace of the center of
gravity.

As illustrated in Fig. 1, let the angle of attack a be zero ror all
time £ except at £ = £,, where a pulse occurs of amplitude «(§,)
and infinitesimal width Af,. Consider a measuring point s on the
wing at a time ¢t subsequent to §£,. The loading at the point is
influenced by all disturbances that originate in the past and are able
to reach the point at the same time t. Each disturbance is propagated
at the local speed of sound, and hence, in a plot such as Fig. 1, the
zone of its influence is bounded by projections of the rays of an
approximately conlc surface whose origin is the point of the disturbance.
Only disturbances whose cones include the point (s,t) in question can

influence the loading at the point. Thus, a certain conic surface,
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directed backward in time from the point (s,t) will include within it
all points in past time whose disturbances are able to inrluence the
loading at s at time t. The projection of such a conic surface is
shown in Fig. 1, where, in the present case, the only disturbances that
exist are those originating from the pulse at £ = £, It will be seen
that only disturbances originating from the shaded part of the pulse
can influence the measuring point. Also note that if the elapsed time
t - £, between pulse and measuring point is held fixed and if the same
pulse and the measuring point are translated together to new positions
on the wing in such a way that the trace of the measuring point remains
parallel to that of the center of gravity, then nothing changes in the
form of the loading at the measuring point. This behavior is captured

by writing the loading at the measuring point in the form of a Taylor

series:

n
BC,(s,8) = 0C (Xt = £;,a(E,)) gy, = Zn: a (x,t - £)[(5,)1%¢,
(2.1)
where loading ACp is the difference between pressure coefficients on

the lower and upper surfaces, and x 1is the distance of the measuring
point from the maximum projection of the leading edge (Fig. 1). It will
be noted that, as required, ACp remains constant when x, t - £,, and
a(€,) are held fixed. The second of the forms in (2.1) will be used in
the subsequent analysis to distinguish between direct (subscript dir)
and interference (subscript int) effects. Equation (2.1) holds under
the principal assumption that at least a limited range of o will

exist in which the loading will depend analytically on «. Further, in

more general clrcumstances, such as in accelerated motion where the
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trace of the center of gravity will be a curved line, the dependence on
elapsed time t - £, alone will not hold; the a, will then depend on
t and {, separately.

Now let us consider the response at the measuring point to a pair of
pulses located at &, and g, with 51,52 < t. Here, in addition to the
direct influence of each of the pulses acting as if in isolation, the
interference between the pulses will also influence the loading. The
interference effect can be written in a form resembling a product of

responses to single pulses

8 (sat)y = mZ; b (6t - 1, - £,) (a8 ] Ta(g,)] e, 8¢,

(2.2)
where the subscript (int,2) is meant to be read as 'interference between

a pair of pulses." With the addition of the direct influence of the

two pulses, the loading at (s,t) takes thz form
ACP(S!t) = ACP(X|C = gl’a(gl))dil‘ + ACP(X,C - 52:0\-52))(111.

+ ACp(s,t) 2.3)

int,2

The nrocess of adding pulses can be continued indefinitely in the
same way. At the next stage, e.g., the interference between triplets of
pulses must be considered as well as that between pairs. Going to the ‘
limit of a continuous distribution of pulses starting at time ¢ =0 !

yields a summation of multiple integrals having the form

AC (s)t) = AC + AC + AC + . . (204) |
P Pair Pint,2 Pint,s
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with

.t
Z a_(x,t - §)[a(g,)])"dg, (2.5)
pdir J
ot &2
Z [a(E,)1MdE, J' b (x,t - £, - £)[a(g,))"dE,
int 2 LA o
“7.0)
£s
Z J- [a(g)]™ J- [a(£,)1"de
pint,a A
%2
x J Cnp (0t = 10t = £yt = £ [alg)1PdE, (2.7)
[o]

Written as a nonlinear functional expansion, (2.4) represents the load-
ing at the point (s,t) in response to an arbitrary variation of «

over the time interval zero to t. The form of (2.4) confirms an
important point made in [20]. It will be noted that a summation of the
leading terms in (2.5,2.6,...) forms a Volterra series [6,20]. The fact
that there are terms left over c~nfirms that the A priori adoption of a
Volterra series to represent the loading would have been insufficiently
general to accommodate the Taylor series form of the dependence on angle

of attack.

3. FORMATION OF INDICIAL RESPONSE. Given (2.4), one can now use it
to form the indicial response as we have defined it in [7]. To indicate
the form of the result, it will be sufficient to consider terms in (2.4)
only through the series representing AcPint,z' Two morions need to be

considered. 1In the first, the wing undergoes the motion under study
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a(g) from time zero up to a time § = 1, where T < t. Subsequent to
1, a 1s held constant at a(r). Thus, in (2.4,2.5,2.6)
a(€) = a(g) ; 0 <& <n
(3.1)

= a(t) ; £E>1

The direct and interference contributions take the forms

T
AC - a_(x,t - £)[a(E )] de
pdir ZIO n 1 1 1
t
+Z[a(t)]n J' a_(x,t - £)dg,
T

n

T £,
ACp = J‘ [o:(&z)lmdﬁ2 J‘ bmn[“(cx)]ndgx (3.2)
inc,2 ;n ‘0 o
t T
+Z{a(r)1“’ J. dg, I by (6(£) 17 de,
s T (o}
t EZ
m+n
+Z(a(r)] J' dg, I bon 961
o0 T T

In the second motion, the wing undergoes the same angle of attack
history a(f) up to time 1. Subsequent to 71, the angle of attack is
again held constant, but is given an incremental step change Aa over
its previous value of a(r). Thus, in the second motion,

a(€) = a(f) ; 0<gf«<r
} .9

= 5(t) + da ; £ >1
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The direct and interference contributions become

T t )
sc, .ZJ‘ an[a(ﬁl)]ndal + ) [a(1) + Aa]” J a_ de,
dir = A A
T £,
e, -ZI [a(s,) 17, I b [ (E1)17dE,
int,2 = % A
%(3.4)
t T
+Z;(a<r> + tal® J' de, Ibm[““l”" de,
’ T [o]
t £,
+Z[a(r) + 8a)™" J- de, J' b dE,
m,n T T J

The difference between the two loadings, with terms retained only of
0(Aa), ylelds the incremental change in loading in response to the

incremental step change in angle of attark:

ACp - ACp t
2 1 D=y
— " E nfa(1)] J- a  dg,

n T

t T
+Zm[a(r)lm'lj. de, J'bm[a(gx)]“ ag,
T [

m,n

- t &2
+24(m + n) [a() ™ I de, J' by, 46,  (3.5)
s T .

Equation (3.5) reveals the form of the indicial loading response to a
step change in angle of attack in terms of functional exparsions. It
will be seen that the first and third terms on the right-hand side of

(3.5) do not depend on the past motion but only on the level of the
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11
angle of attack a(r) at which the step was made. The second term
depends on the past motion, however, since a(f;) with 0 < £, <1
appears within the integral. The leading term of this past dependence
has the form ft dE2 fT a(El)bn(x,t - El,t - gz)dg,. Dependence on
the past thus azises frgm interference effects between pulses prior .o
1, the origin of the step, and perturbation pulses of 0(Aa] originating
subsequent to T. In the general nonlinear case, then, and just as
before [7], the indicial response is itself a functional. In the limit
as Aa » 0, then (3.5) can be cast in the functional form

AC_ - AC

pz px 3

lim v = EE-ACP(s,t) = Acp [a(g);x,t,T] (3.6)

Ao—>0 a

where it will be noted that, within the functional, dependence on t

and 1 1is indicated separately rather than on elapsed time t - 1 alone.
It can be easily verified that the first and .hird terms in (3.5), which
depend only on the level ao(1), indicate a dependence on t - t alone;
howcver, as a consequence of its dependence on the past motion, the

second term cannot be cast as a function of t - 1 alone.

4. GENERALIZED SUPERPOSITION INTEGRAL. Just as before, (3.6) can
he used to form a generalized superposition integral for the response in
ACF to an arbitrary angle-of-attack variation. The result is

t

) da
ACp(s.t) - [.VP(B.O) + 'f uCp [a(E);x,t,1] a dr .1)

a
[o}

By substituting (3.5) for ACp [a(E);x,t,t] in the integral term in
a

(4.1) and carrying out the integration, one will serify that the form of
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(4.1) is restored through terms of the series representing ACP .
int,2

This should suffice to demonstrate that our use of indicial responses

and generalized superposition integrals is in fact compatible with the

approach based on nonlinear functional expansions.

5. PRINCIPAL SIMPLIFICATION. The simplification most instrumental
in making our use of nonlinear functionals in the analysis of aircraft
dynamics practicable has proved to be the reduction of the general
aerodynamic force and moment responses to forms correct to within a
first-order dependence on angular rates. This approximation is justi-
fied in its application to studies of aircraft dynamics in view of the
generally low reduced frequencies characteristic of aircraft motions.

In the following, the steps involved in the reduction are reviewed in
order to highlight the several advantages of the reduction as well as to
set the stage for a discussion of the amendments required to accormodate
the occurrence of bifurcation phenomena.

Integrating the expression for loading in (4.1) across the chord
eliminates the dependence on x and yields a form for the response in
11ft coefticient to an arbitrary angle-of-attack variation

t

c (t) = ¢ (0) + J' ¢, [t.sa(e)] § ar 5.1)

Qa
Q0

Note that the order of the dependencies has been reversed within the

functional CL to anticipate the enhanced role played by t and T in
a

the ensuing analysis.

Consider first the behavior of the functional as the elapsed time

t - 1t increases. It ic clear physically that, with increasing ¢t - 1,
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the dependence of CL on the past motion a(f); & < 1 must fade away.

a

Thus, as t - 1 > =, CL approaches a function which is dependent only
a

on t - 1 and a(t), the level of the angle of attack at which the step

was made. Additionally, we assume here that as t - T + «, CL will
a

approach a unique, constant value corresponding to the lift-curve slope
which would be measured in a steady flow. More precisely, we assume
that fluctuations, which always exist, are small enough to be neglected
in comparison to mean values resulting from ensemble averaging. It is
this issumption that will require amendment in the consideration of
bifurcation phenomena. Here, however, we invoke it explicitly by making

the substitution

L (t,T150(8)] = c. (»;a(t)) - Flt,1;0(8)] (5.2)
a o

The quantity F 1is called the deficiency function(al). Provided the
steady-state term CL (»;a(t)) is in fact constant, F must approach
zero as t - T + o, ghen (5.2) 1s substituted in (5.1), the product of
CL (»;a(t)) and a(r) forms a perfect differential which can be inte-

o

grated, yielding

t
CL(t) = C (=u(t)) - .f Fle,ta(6)] 2 de (5.3)

[o]
where CL(m;u(t)) represents the (mean) 1lift coefficient that would be
measured in a steady flow with o held fixed at the instantaneous value
a(t). Now we examine the dependence of F on the past motion a(f).
If a(f) can be considered an analytic function in a neighborhood of
£ = 1 (corresponding to the most recent past for an indicial response

with origin at £ = 1), then its history can be reconstructed, in

s . .
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principle, from a knowledge of all of the coefficients of its Taylor
series expansion about £ = 1. Since a(f) i8 equally represented by
the coefficients of its expansion, it follows that the functional F,
with its dependence on o(£), can be replaced without approximation by
a function which depends on all of the coefficients of the expansion of
a(¢) at £ = 1. Thus, F can be expressed as

Flt,1;a(8)] = F(t,t;a(t),a(t), « . .) (5.4)
Assuming now that a(t) is potentially large but that the rates
a(r),a(t), . . . are all always small, we are permitted to expand (5.4)
around the zero values of the rates, so that

Flt,t;0(8)] = F(t,t;0(t),0,0, . . .) + &(T)F&(C,T,G(T),0,0, « e w)

.2
+-2—§ll F&&(C,T;G(T),0,0, e e )+
+ &(T)Fa(t,r;a(T),0,0, D T ST SRR (5.5)

Returning to (5.3) and retaining terms only to within a linear dependence
on a&(t), we get for the integral term

t
1(t) =J' F(t,1;a(1),0,0, « . .) %% dr (5.6)

(¢}
To the order of the approximation, only the first term of the expansion
of F survives in (5.6). As a consequence, and as the notation shows,
as far as the functional F 1is concerned, the past motion 1s simply the
constant motion a(f) = a(t). On this basis, it is consistent now to
say as well that F will depend only on elapsed time t - 1, rather

than on t and vt separately. Expansion of @(t) about t =t and the

et B . A oW e ot P W L - . - -

14



&)

dependence of F on a(t) about a(t) yield, to within a linear depen-

dence on af(t),

(-]

I(t) = a(t) J- F(u;a(t))du (5.7)

[o}

where we have assumed F(uja(t)) 2 0 for all u=t -1 2t and t

a

large enough so that t > t- Substituting this result for the integral

term in (5.3) yields as the formulation for the 1lift coefficient

C (£) = C (=3a(t)) + &(t) ;,": ¢, @) (5.8)

where

©
Q

and £ 1s a characteristic length (e.g., chord length).

The simple form of (5.8) contains a number of important advantages.
Since CL. depends only on a(t), within the approximation the response
to any ofaa class of sufficiently slowly varying motions which arrive at
the same value of a at time t will yield the same value of CL.'
In particular, a harmonic motion of infinitesimal amplitude about Z mean
value of a equal to the instantaneous value a(t) suffices to obtain
CL.' This motion is the preferable one from both the experimental and
th: computational standpoint. On the other hand, a finite amplitude
harmonic oscillation about a mean value of a, say o s can be used as
well to obtain CL. at the particular points in the motion where the
instantaneous amplgtude a(t) is such that a(t) = a(t) - a . This fact

enables one to deduce the results for finite-amplitude oscillatory

LY

-t s . N ow ewe o ey W . - -

v
¢, (a(t)) = - —2‘1 J. F(u;o(t))du (5.9)
0



i‘k

M I N

motions from those of infinitesimal~-amplitude oscillations, a consider-
able advantage from the computational standpoint. Finally, and most
important, as will be seen in the contribution to this collection by
Hui and Tobak, the simplification provides the rationale that allows
decoupling flow-field equations from the inertial equations of motion
and using results for the aerodynamic terms in the mathematical model

from known harmonic motions.

6. CONNECTION WITH BIFURCATION THEORY. We intend to show that our
use of indicial responses as a basis for arriving at the form of the
aerodynamic force and moment leads naturally to the consideration of
bifurcation phenomena. To fix ideas, we restrict attention initially to
laminar flows and assume that the flows are governed by the Navier-
Stokes equations. Further, we assume that the maneuvers and measure-
ments can be carried out with sufficient precision so that they are
effectively er-.orless and repeatable, eliminating the necessity of
accounting for the presence of random fluctuations. The extent to which
the analysis must be deepened to accommodate turbulent flows and random
fluctuations will be addressed later.

We begin by r~ronsidering the maneuvers required to form an indicial
response. As pefore, two maneuvers are involved, both beginning at

£ =0, 2.d constrained at £ = 1, and differing only in the step imposed

on ti.e second maneuver at £ = 1. For each maneuver, the 1lift coefficient

is measured at a time t subsequent to 1. If we assume that the dif-
ference between measurements at time ¢t, ACL(t), divided by the magnitude

of the step, Aa, exists and is unique in the limit as Aa - 0 for all

iy Sap - G ey e s . L - 1
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valunrs of £ =t > 7, then we define this limit as the indicial response
in 1ift coefficient per unit step change in o. Hence, the basic
assumption on which the definition of the indicial response rests will
fail when the indicial response ceases to exist or to be unique. A very
natural way of invalidating the assumption is through the mechanism of
instability, which we have not considered in this context before. It

is here that the possibility exists of extending our analysis by incor-
porating ideas from bifurcation theory.

Consider the first of the two maneuvers involved in the formation of
the indicial response. The angle of attack attains a constant value
a(t) subsequent to T and it is reasonable to expect that the flow
field at the subsequent time t will approach an equilibrium state that
corresponds to this fixed boundary condition, as the elapsed time
t - 1T+ » In all of our previous analyses, we have assumed that as the
flow field approached the equilibrium state it hecame time-invariant,
which meant that the corresponding lift coefficient CL(t) approached a
unique constart value CL(w;a(T)) as t -1+ o, As long as this was
true, it was reasonable likewise to expect that an incremental change
in a(r) of 0(Aa) would result in an incremental change in CL(w;a(T)),
likewise of 0(An). We now recognize that this will be true as long as
the time-invariant equilibrium state represented by CL(w;a(r)) is
(asymptotically) stable to small perturbations in «. It can happen,
however, that as a(tr) is increased in small increments, a critical
value of a(r) can be reached at which the stationary equilibrium state
represented by CL(w;a(t)) will no longer be stable to small perturba-

tions in a. Of the new equilibrium states that are possible, the

- iy Ay - G o e 4 Ser = o -
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system will seek one which can remain stable to small) perturbationms.
Now this is precisely the situation that bifurcation theory is designed
to address. Bifurcation theory tries to classify and characterize the
properties of the new equilibrium states that can arise when the given
equilibrium state becomes unstable. Of the types of bifurcation phe-
nomena that are possible, perhaps the most typical in aerodynamics is
the "Hopf" type, which is characterized as follows: A previously stable
time-invariant equilibrium state is replaced by a time-varying oscilla-
tory equilibrium state. Physically, the usual origin of such a large-
scale oscillatory state is the onset of vortex-shedding. Of the many
examples, we cite here stall on airfoils when the angle of attack
exceeds a critical angle [21,22] and the wake of the flow past a cylin-
der when the Reynolds number exceeds 50 [23]. Bifurcation theory gives
us the means to incorporate these phenomena within a rational frame-
work, consequently, the possibility of accounting for those critical
points in maneuvers where sudden and dramatic changes in flow structure
may occur.

To conclude, we indicate our current thoughts on the directions in
which the analysis must be extended to acknowledge the important effects
of random fluctuations and turbulent flows. The issue has separate
experimental and computational components.

From the experimental standpoint, the presence of random fluctuations
in the maneuvers and the measurements is a practical question which
arises even with strictly laminar flows. As we have already indicated,
however, (cf., in particular, [12]) adoption of ensemble-averaging allows

us, in principle, to acknowledge the presence of random fluctuations
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without otherwise having to alter the analysis. On this basis, one can
recognize the probable existence of bifurcation phenomena by the exami-
nation of the mean value of the 1lift coefficient in the equilibrium
state, say E;?;ZE?¥77. Values of o at which EZ?;?E??ST is double-
valued, or at which the slope of CL(w;a(r)) with o is discontinuous,
are the signs of probable bifurcation phenomena. We have already noted
the existence of the latter symptoms in several of our previous studies
(cf. [15,16,17]) and, in [17], we have devised a special scheme for
treating them in the particular instance where they reflect the presence
of hysteresis in the equilibrium flow. We now recognize the possib.iity
of incorporating such special treatments within the more general frame-
work that an analysis based on ideas from bifurcation theory will provide.
Consideration of the question of random fluctuations and turbulent
flows from the computational standpoint brings to the fore an additional
issue. While laminar flows could be said to be governed by the Navier-
Stokes equations, even in the presence of random fluctuations, account-
ing for the presence of turbulent flow in computations centers around
the problem of having to define the equations governing the flow. This
is the turbulence modeling problem. In current practice, it is gener-
ally agreed that any particular realization of a turbulent flow could
be modeled, in principle with sufficient accuracy, by a solution of the
Navier-Stokes equations. However, the existence of rapid and apparently
random fluctuations in the flow makes it mandatory that the equations
be averaged to suppress the appearance of the rapid fluctuations. The
averaged equations, called Reynolds-averaged Navier-Stokes equations,

are then closed by the installaticn of a suitably chosen closure model.
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This effectively casts the equations in a form similar to that of the

original Navier-Stokes equations. Therefore, in application to modeling

the equilibrium flows associated with the formation of indicial responses,

we should expect the modeled turbulent flow equations to mirror behavior
previously captured by the Navier~Stokes equations in application to
laminar flows. Thus, typically, when they are applied at low values of
a(t), modeled turbulent flow equations should yield solutions for equi-
librium flows that are invariant with time. But, just as before, time-
invariant equilibrium flow solutions that had been stable for values of
a(t) below a critical value should be expected to become unstable upon
exceeding the critical value, and to seek a new branch of stable solu-

tions. One possibility is a branch consisting of time-varying oscilla-

tory solutions. Encouraging evidence is available that modeled turbulent

flow equations in fact can be sufficiently general to exhibit such
instability and bifurcation phenomena. In particular, the results of
Levy ([24-26); see also the discussion in [27]) for transonic flow past
a biconvex airfoil show the typical Hopf-type bifurcation that reflects
the onset of vortex-shedding in the wake, when either Reynolds number,
Mach number, or lift coefficient exceed critical values. An analogous
problem involving the occurrence of aileron buzz at transonic speeds
when either Mach number or angle of attack exceeds critical values, has
been treated by Steger and Bailey in [28].

The concerns of turbulence modeling research and those of research in
the modeling of aerodynamic responses converge on the issue of the
bifurcation behavior of equilibrium flows. In judging the importance of

this issue, one should note that bifurcation phenomena reflect the
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occurrence of sudden and potentially dangerous changes in flow structure
during dynamic maneuvers. A resolution of the issue hinges in great
part on the correct identification of these occurrences as the relevant
parameters (e.g., angle of attack, sideslip angle, Reynolds number, Mach
number) range over their respective envelopes, and their capture by
means of computations based on modeled equations of turbulent flow. 1In
application to two-dimensional flows past airfoils, as we have seen,
modeled equations of turbulent flow have given evidence of their ability
to capture the Hopf-type bifurcations typical of the onset of vortex-
shedding. 1In application to the inescapably three-dimensional flows
typical of modern slender aircraft, modeled equations of turbulent flow
will be called upon additionally to capture bifurcation phencmena such
as the asymmetric vortex flows and vortex breakdowns that will appear

as the parameters are varind over their extensive ranges.
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